399 research outputs found

    On the MISO Channel with Feedback: Can Infinitely Massive Antennas Achieve Infinite Capacity?

    Full text link
    We consider communication over a multiple-input single-output (MISO) block fading channel in the presence of an independent noiseless feedback link. We assume that the transmitter and receiver have no prior knowledge of the channel state realizations, but the transmitter and receiver can acquire the channel state information (CSIT/CSIR) via downlink training and feedback. For this channel, we show that increasing the number of transmit antennas to infinity will not achieve an infinite capacity, for a finite channel coherence length and a finite input constraint on the second or fourth moment. This insight follows from our new capacity bounds that hold for any linear and nonlinear coding strategies, and any channel training schemes. In addition to the channel capacity bounds, we also provide a characterization on the beamforming gain that is also known as array gain or power gain, at the regime with a large number of antennas.Comment: This work has been submitted to the IEEE Transactions on Information Theory. It was presented in part at ISIT201

    MISO Broadcast Channel with Delayed and Evolving CSIT

    Full text link
    The work considers the two-user MISO broadcast channel with gradual and delayed accumulation of channel state information at the transmitter (CSIT), and addresses the question of how much feedback is necessary, and when, in order to achieve a certain degrees-of-freedom (DoF) performance. Motivated by limited-capacity feedback links that may not immediately convey perfect CSIT, and focusing on the block fading scenario, we consider a progressively increasing CSIT quality as time progresses across the coherence period (T channel uses - evolving current CSIT), or at any time after (delayed CSIT). Specifically, for any set of feedback quality exponents a_t, t=1,...,T, describing the high-SNR rates-of-decay of the mean square error of the current CSIT estimates at time t<=T (during the coherence period), the work describes the optimal DOF region in several different evolving CSIT settings, including the setting with perfect delayed CSIT, the asymmetric setting where the quality of feedback differs from user to user, as well as considers the DoF region in the presence of a imperfect delayed CSIT corresponding to having a limited number of overall feedback bits. These results are supported by novel multi-phase precoding schemes that utilize gradually improving CSIT. The approach here naturally incorporates different settings such as the perfect-delayed CSIT setting of Maddah-Ali and Tse, the imperfect current CSIT setting of Yang et al. and of Gou and Jafar, the asymmetric setting of Maleki et al., as well as the not-so-delayed CSIT setting of Lee and Heath.Comment: Submitted to Transactions on Information Theory - November 2012 18 double column page

    Optimal DoF Region of the Two-User MISO-BC with General Alternating CSIT

    Full text link
    In the setting of the time-selective two-user multiple-input single-output (MISO) broadcast channel (BC), recent work by Tandon et al. considered the case where - in the presence of error-free delayed channel state information at the transmitter (delayed CSIT) - the current CSIT for the channel of user 1 and of user 2, alternate between the two extreme states of perfect current CSIT and of no current CSIT. Motivated by the problem of having limited-capacity feedback links which may not allow for perfect CSIT, as well as by the need to utilize any available partial CSIT, we here deviate from this `all-or-nothing' approach and proceed - again in the presence of error-free delayed CSIT - to consider the general setting where current CSIT now alternates between any two qualities. Specifically for I1I_1 and I2I_2 denoting the high-SNR asymptotic rates-of-decay of the mean-square error of the CSIT estimates for the channel of user~1 and of user~2 respectively, we consider the case where I1,I2∈{γ,α}I_1,I_2 \in\{\gamma,\alpha\} for any two positive current-CSIT quality exponents γ,α\gamma,\alpha. In a fast-fading setting where we consider communication over any number of coherence periods, and where each CSIT state I1I2I_1I_2 is present for a fraction λI1I2\lambda_{I_1I_2} of this total duration, we focus on the symmetric case of λαγ=λγα\lambda_{\alpha\gamma}=\lambda_{\gamma\alpha}, and derive the optimal degrees-of-freedom (DoF) region. The result, which is supported by novel communication protocols, naturally incorporates the aforementioned `Perfect current' vs. `No current' setting by limiting I1,I2∈{0,1}I_1,I_2\in\{0,1\}. Finally, motivated by recent interest in frequency correlated channels with unmatched CSIT, we also analyze the setting where there is no delayed CSIT

    High dimensional generalized empirical likelihood for moment restrictions with dependent data

    Get PDF
    This paper considers the maximum generalized empirical likelihood (GEL) estimation and inference on parameters identified by high dimensional moment restrictions with weakly dependent data when the dimensions of the moment restrictions and the parameters diverge along with the sample size. The consistency with rates and the asymptotic normality of the GEL estimator are obtained by properly restricting the growth rates of the dimensions of the parameters and the moment restrictions, as well as the degree of data dependence. It is shown that even in the high dimensional time series setting, the GEL ratio can still behave like a chi-square random variable asymptotically. A consistent test for the over-identification is proposed. A penalized GEL method is also provided for estimation under sparsity setting
    • …
    corecore